Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 89-100, 2018.
Article in English | WPRIM | ID: wpr-742372

ABSTRACT

The purpose of this study was to evaluate the osteogenesis ability of osteogenic matrix cell sheets (OMCS) derived from old donor cells. Bone marrow stromal cells (BMSC) were obtained from young (7-week-old) and old (1-year-old) Fischer344 rats donors and cultured with modified Eagle's medium (MEM group) alone or containing dexamethasone (Dex; 10 nM) and ascorbic acid phosphate (AscP; 0.28 mM) (Dex/AscP group). We prepared four in vitro experimental groups: (1) young MEM, (2) young Dex/AscP, (3) old MEM and (4) old Dex/AscP. Cell proliferation and osteogenic marker mRNA expression levels were evaluated in vitro. To assess bone formation in vivo, the cells of each group were combined with beta tricalcium phosphate (TCP) disks followed by implantation in recipient rats. The in vitro study showed significant differences in the mRNA expression of osteocalcin, ALP, and BMP2 between MEM and Dex/AscP groups. Bone formation following implantation was observed upon histological analyses of all groups. TCP combined with OMCS (OMCS/TCP group) resulted in enhanced bone formation compared to that following combination with BMSC (BMSC/TCP). The osteocalcin content of the OMCS/TCP group 4 weeks after implantation was significantly higher than that in the BMSC/TCP construct for both young and old donors. The present study clearly indicated that OMCS could be generated from BMSCs of old as well as young donors using a mechanical retrieval method. Thus, through its usage of OMCS, this method may represent a potentially effective therapeutic option for cell-based therapy in elderly patients.


Subject(s)
Aged , Animals , Humans , Rats , Ascorbic Acid , Bone and Bones , Bone Marrow , Cell Proliferation , Dexamethasone , In Vitro Techniques , Mesenchymal Stem Cells , Methods , Osteocalcin , Osteogenesis , RNA, Messenger , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL